

1 Methodology

1.1 The National HIV Registry

National surveillance for HIV notifications

HIV is a notifiable disease in each state/territory health jurisdiction in Australia. All new HIV diagnoses are reported by doctors and laboratories to state/territory health authorities. Information sought on the notification forms includes: name code (based on the first two letters of the family name and the first two letters of the given name), sex, date of birth, postcode, country of birth, Aboriginal and/or Torres Strait Islander status, date of HIV diagnosis, CD4+ cell count at diagnosis, likely place of HIV acquisition, source of exposure to HIV and evidence of newly acquired HIV (see below). If the person was born overseas, language spoken at home and date of arrival in Australia are also recorded. These data are then forwarded to the Kirby Institute for collation and analysis. The database where HIV notifications are stored is referred to as the National HIV Registry.

Information on country of birth has been reported by all jurisdictions since 2002 and language spoken at home has been reported by New South Wales, Queensland and Victoria since 2004 and by all jurisdictions since 2008. Information on date of arrival in Australia and likely place of acquisition has been reported by all jurisdictions since 2014.

In New South Wales, information on cases of newly diagnosed HIV was sought only from the diagnosing doctor prior to 2008. From 2008, information was also sought from the doctors to whom the person with HIV was referred, and follow-up was carried out for cases for which the information sought at HIV notification was incomplete. These new procedures resulted in more complete information on HIV notifications and reassignment of cases found to have been newly diagnosed in earlier years.

The procedures used for national HIV surveillance of newly diagnosed HIV are available at kirby.unsw.edu.au.

Newly acquired HIV

Newly acquired HIV is defined as newly diagnosed HIV with evidence of a negative or indeterminate HIV antibody test or a diagnosis of primary HIV within the previous 12 months. Information on the date of the last negative or indeterminate test or date of onset of primary HIV has been routinely sought from each state/territory health jurisdiction since 1991.

Late and advanced HIV diagnosis

Advanced HIV diagnosis is defined as newly diagnosed HIV with a CD4+ cell count of less than 200 cells/ μ L, and late HIV diagnosis was defined as newly diagnosed HIV with a CD4+ cell count of less than 350 cells/ μ L. HIV notifications classified as newly acquired HIV were not categorised as late or advanced diagnoses irrespective of CD4+ cell count.

Rates of HIV diagnosis

Age-standardised notification rates were calculated using population denominators obtained from the Australian Bureau of Statistics (ABS) by state, year, sex and age (ABS series 3101051-3101058) and were standardised using ABS Standard Population data. Population denominators by country/region of birth were based on the Standard Australian Classification of Countries (SACC) (ABS series 1269.0), with proportion of population by region of birth and year ascertained from ABS.Stat data. Population denominators by year, sex, age and state for Aboriginal and Torres Strait Islander people were obtained from ABS catalogue 32380 estimated and projected population. ABS regional population denominators by age, sex, Indigenous status and state were obtained from the ABS and from the 2011 Census-based Aboriginal and Torres Strait Islander Population Projections by Age, Sex and Remoteness Area (2011– 2026). Remoteness area categories for these data were 'metropolitan', 'inner and outer regional' and 'remote and very remote'. State-based proportions were assigned based on proportions by age, sex and state for each remoteness region in 2011 estimates.

Rates of HIV in Aboriginal and Torres Strait Islander populations were compared with Australian-born non-Indigenous populations unless otherwise stated. This was done so the epidemiology excludes imported HIV cases, where trends can fluctuate in response to immigration patterns, and focuses on HIV infection endemic to Australia.

High HIV-prevalence countries

Countries recognised by UNAIDS as having a national prevalence above 1% in any of the years in the past 10 years (2009–2018) were considered high-prevalence. The following countries were considered high-prevalence:

Ukraine Lesotho South Sudan Malawi Thailand Mauritius Guyana Mozambique Suriname Namibia Belize Rwanda Antigua And Barbuda South Africa Bahamas Eswatini United Republic of Tanzania Barbados **Dominican Republic** Uganda Haiti **Zambia** Jamaica Zimbabwe Saint Vincent and the Grenadines Benin Burkina Faso Cameroon Central African Republic Chad Congo Democratic Republic of the Congo Côte d'Ivoire Equatorial Guinea Gabon Gambia Ghana Guinea Guinea-Bissau Liberia Mali Nigeria Sao Tome and Principe Sierra Leone Togo Angola Botswana Burundi Djibouti Ethiopia Kenya

Australian National Notifiable Diseases Surveillance System

The National Notifiable Diseases Surveillance System (NNDSS), established in 1990 under the auspices of the Communicable Diseases Network of Australia. NNDSS coordinates the national surveillance of more than 50 communicable diseases or disease groups. Under this scheme, notifications are made to the state/territory health authorities under the provisions of the public health legislation in the respective jurisdictions. Computerised, de-identified unit records of notifications are supplied to the Australian Government Department of Health on a daily basis for collation, analysis and publication on the NNDSS website (http://www9.health.gov.au/cda/source/cda-index.cfm), updated daily, and in the quarterly journal *Communicable Diseases Intelligence*.

Notification data provided include a unique record reference number, state or territory identifier, disease code, date of onset, date of diagnosis to the relevant health authority, sex, age, Aboriginal and Torres Strait Islander status and postcode of residence.

'Diagnosis date' was used to define the case specific occurence used for rate calculation. This date represents either the onset date or, where the date of onset was not known, the earliest of the specimen collection date, the notification date, and the notification receipt date. As considerable time may have elapsed between the onset and diagnosis dates for syphilis (unspecified), hepatitis B (unspecified) and hepatitis C (unspecified), the earliest of: the specimen collection date, health professional notification date or the public health unit notification receipt date was used.

Viral hepatitis

New notifications of viral hepatitis (hepatitis B and C) are notifiable conditions in all state/territory health jurisdictions in Australia. Cases were notified by the diagnosing laboratory, medical practitioner, hospital or a combination of these sources, through state/territory health authorities, to the National Notifiable Diseases Surveillance System (NNDSS). Age-standardised population rates of diagnosis of viral hepatitis were calculated for each state/territory using yearly population estimates provided by the ABS as described above.

Hepatitis B infection and hepatitis C infection were classified as newly acquired if evidence was available of acquisition in the 24 months prior to diagnosis. Newly acquired hepatitis B notification data were available from all health jurisdictions. Newly acquired hepatitis C notifications were available from all health jurisdictions, and in Queensland from 2010 onwards.

Sexually transmissible infections

Diagnoses of sexually transmissible infections were notified by state/territory health authorities to the National Notifiable Disease Surveillance System (NNDSS), maintained by the Australian Government Department of Health. Chlamydia was notifiable in all health jurisdictions except New South Wales prior to 1998. Gonorrhoea was notifiable in all health jurisdictions and infectious syphilis was notifiable in all jurisdictions since 2004. In most health jurisdictions, diagnoses of sexually transmissible infections were notified by the diagnosing laboratory, the medical practitioner, hospital or a combination of these sources (Table M1).

	ACT	NSW	NT	QLD	SA	TAS	VIC	WA
Diagnosis								
	Doctor Laboratory Hospital		Doctor Laboratory	Doctor Laboratory Hospital	Doctor Laboratory	Doctor Laboratory Hospital	Doctor Laboratory	Doctor Laboratory
Gonorrhoea		Laboratory						
Infectious syphilis	Doctor Laboratory Hospital	Doctor Laboratory Hospital	Doctor Laboratory	Doctor Laboratory Hospital	Doctor Laboratory	Doctor Laboratory Hospital	Doctor Laboratory	Doctor Laboratory
Chlamydia	Doctor Laboratory Hospital	Laboratory	Doctor Laboratory	Doctor Laboratory Hospital	Doctor Laboratory	Laboratory	Doctor Laboratory	Doctor Laboratory
	Not notifiable		Doctor Laboratory	Doctor Laboratory Hospital	Doctor Laboratory		Doctor Laboratory	Doctor Laboratory
Donovanosis		Laboratory				Laboratory		

Age-standardised rates of notification for chlamydia, gonorrhoea and infectious syphilis were calculated using analogous procedures to those described above for HIV notifications (see HIV notifications methodology).

1.2 Diagnosis and care cascade

HIV diagnosis and care cascade

The approach taken to develop the HIV diagnosis and care cascade was informed by recommendations from a national stakeholder reference group (see Acknowledgments for members of the reference group).

Estimating the number of people with diagnosed HIV

To estimate the number of people living with diagnosed HIV, we performed a simple calculation using annual notifications, estimated mortality rates and emigration rates.

Annual HIV notifications data was provided by Australia's National HIV registry. Notifications are incomplete for several key variables used in the cascade calculations. Using the variables year of diagnosis, jurisdiction, sex, age at diagnosis, country of birth, exposure category, and region of diagnosis (SA4 level) we applied statistical imputation to produce 10 sets of complete notifications for the cascade calculations. A predictive mean matching imputation method was applied using the R package MICE [1]. We applied this method to each jurisdiction separately to prevent mismatching of location of diagnosis variables. The calculation method described in the following paragraphs was then applied to each of the 10 imputed sets with the annual mean and range calculated from each set to produce the final annual estimates for the number of people living with diagnosed HIV.

Due to incomplete or inaccurate recording of name codes the registry contains multiple reports for some individuals especially during the early stages of the epidemic. To estimate the number of duplicates we applied a statistical technique which has previously been applied to Australia's National HIV Registry [2]. This calculation estimated the number of duplicate notifications annually up to 2016, resulting in 8.1% duplicate notifications by 2016 with most duplicates occurring early in the epidemic. From 2017, we assumed all notifications were unique.

We combined two approaches to estimate the number of deaths among people diagnosed with HIV. To estimate the number of deaths up to 2003 we used a linkage study conducted between Australia's National Death Index and the National HIV Registry for cases to the end of 2003 [2]. This study calculated HIV- and AIDS-related deaths and calculated standardised mortality ratios for people with HIV during different eras of antiretroviral therapy. It identified 8519 deaths among people diagnosed with HIV or AIDS to the end of 2003. Of these deaths, 6900 were recorded in the National HIV Registry, meaning that 19% of all deaths were missing from the registry. Due to the backdating of deaths in the National HIV Registry after 2003, we used this percentage to inflate the number of recorded deaths in the registry until the end of 2003 (inflating the 7102 deaths recorded to the end of 2003 to 8768 deaths overall) and estimated the overall average mortality rate for diagnosed people living with HIV prior to 2003. After 2003 we used annual mortality rates from the Australian HIV Observational Database (AHOD) [3]. Between 2004 and 2018, similar annual mortality rates were estimated for the AHOD cohort regardless of whether people were retained, lost or returned to follow-up. We used the annual overall mortality rate from AHOD as the best estimate and the 95% confidence interval as a range in our calculations for the number of diagnosed people living with HIV.

We also considered the impact of emigration. As people are not included in the National HIV Registry until they have been diagnosed in Australia (even if they have been diagnosed previously overseas) we did not consider the entry of people living with diagnosed HIV. We estimated an emigration rate for diagnosed people living with HIV using data from the ABS and follow-up data of people recently diagnosed in New South Wales[4]. NSW Health has followed up all people diagnosed with HIV during 2013-2018 and reported up to 5% of people move overseas soon after their diagnosis with most of these movements overseas occurring in people born overseas. As these data are for notifications in recent years, we assume the NSW data is an upper bound. Assuming this post diagnosis migration has been constant over time we reduced the number of PLDHIV by a weighted percentage equal to 2.0% overall nationally with a range of 0% to 4% to reflect this initial migration. As there is likely to be a flux of people leaving temporarily and returning to Australia (some of whom may still receive care and treatment while overseas), we used

data on the annual number of people in the overall population who permanently leave Australia (provided by

the ABS for 1976–2016 in series 340102) and the estimated resident population (ABS series 310104) to calculate an overall annual emigration rate. Since 1981 this rate has risen from around 0.1% to 0.4% of the resident population leaving Australia permanently. From June 2017, permanent removals are no longer recorded by the ABS due to the removal of the green card from customs processes upon leaving Australia. For the 2018 cascade estimates, we assumed the same emigration rate as for 2016. The permanent rate of departure is the lower bound of the overall rate at which Australian residents leave Australia for longer than 12 months. However, diagnosed people living with HIV require ongoing care and treatment which is not subsidised in many countries, so we assume the permanent rate of departure is a reasonable estimate for the population of diagnosed people living with HIV. We adjusted this rate to reflect the different emigration rates for men and women older than 15 years in the general population. Overall, we assumed a range in the annual emigration rate between zero and double the overall rate of permanent departure.

Our overall estimate of the number of people diagnosed with HIV in Australia each year is obtained by adding the number of unique notifications to the previous year's estimate and subtracting the number of deaths and emigrants using the mortality and migration rates.

Subpopulation estimates

We also provided HIV estimates for the number of people living with HIV and the number of people diagnosed for each exposure risk category, region of birth, males, females, and Aboriginal and Torres Strait Islander status.

For each subpopulation, we estimated the proportion of duplicates separately. We also adjusted the death and emigration rates to reflect the differences in these rates in males and females in the general population. Mortality and migration rates were adjusted for the Indigenous and non-Indigenous Australian-born population to reflect the higher overall mortality in Aboriginal and Torres Strait Islanders as reported by the ABS (abs.gov.au/ausstats/abs@.nsf/ mf/3302.0). We also assumed no Indigenous people living with diagnosed HIV move overseas. Finally, we separately estimated the emigration rate for males and females and by region of birth to reflect the large differences in emigration. We did this using net overseas migration departures for 2004–2015 (which were provided to the Kirby Institute by the ABS by age, sex, jurisdiction and age; ABS series 34120) calculating the relative difference between the subpopulation and the overall net overseas migration rates and applying this to the overall migration rate for diagnosed people living with HIV. For years before 2004 and after 2015 we estimated the relative emigration rate using linear regression.

Similarly, we assumed a higher post-diagnosis emigration rate for overseas-born people based on the NSW six-monthly follow-up data for 2013–2018 (which was 0.89% for Australian-born people and 9.2% for overseas-born people).

Estimating the number of people living with HIV

To estimate the overall number of people living with HIV, both diagnosed and undiagnosed, we used the European Centre for Disease Prevention and Control (ECDC) HIV Modelling Tool (version 1.3.0) to estimate the proportion of people with HIV who are undiagnosed [5].

The ECDC tool is a multi-state back-calculation model using notifications data and estimates for the rate of CD4+ cell count decline to fit notification rates over time, producing estimates for HIV incidence, time between infection and diagnosis, and the undiagnosed population by CD4+ cell count strata, using surveillance data on new HIV and AIDS notifications. To run the model, notifications data is split by CD4+ cell count strata, whether the patient had AIDS at the time of diagnosis, and optional risk of exposure categories. Diagnosis rates can be adjusted to reflect changes over time and whether people with HIV are more likely to be diagnosed at later stages of infection. For the cascade estimates we divided all annual notifications into those attributed to male-to-male sex, heterosexual contact, injecting

drug use, and 'other' risk exposures. We ran the ECDC tool for each exposure risk category as well as overall

(with all groups combined) and excluding male-to-male sex. Separate models were run for Indigenous and non-Indigenous Australian-born populations, males and females, and for each region of birth. The tool's diagnosis rate options were adjusted to best fit the data on CD4+ cell count at diagnosis.

For validation we compared the model estimates for undiagnosed gay and bisexual men with empirical data from the COUNT study [6]. This study was conducted alongside routine behavioural surveillance surveys in which gay and homosexually active men from Sydney, Melbourne, Canberra and Perth were recruited from a range of gay community sites in 2013–2014. In this study 8.9% of participants were previously undiagnosed with HIV (95% CI 5.8–13.5%). This is closely matched by the ECDC tool estimated percentage undiagnosed in 2014 for gay and bisexual men of 10.4% (range: 9.7–11.2%).

The overall prevalence of HIV in Australia and for each subpopulation was then estimated by inflating the calculated number of people living with diagnosed infection by the estimated level of undiagnosed infection. Because the ECDC model is run separately, the sum of number undiagnosed for individual subpopulations can be different from the overall population estimate.

Estimating the number retained in care

To estimate the number of people living with HIV retained in care we used available clinical data on the proportion of HIV-positive people attending a clinic who receive an annual CD4+ or viral load test. An issue with clinic data is that people can appear to be lost to follow-up, and hence not in care, when they have just transferred to another clinic. A study conducted in during 2011-2013 in a network of the six main HIV clinical care sites in Victoria estimated 91.4-98.8% of HIV-positive patents were retained in care [7]. A follow-up study was conducted during 2016-2017 and it obtained results agreeing with the earlier study with 96% of people retained in care [8]. We assume these results are broadly representative of HIV-positive patients in Australia and assume a best estimate of 96% of people living with HIV retained in care with a range equal to 93% to 99%.

Estimating antiretroviral treatment coverage

We estimated the number of people receiving antiretroviral therapy using a 10% sample of Pharmaceutical Benefits Scheme (PBS) patient-level script claims data provided by the company Prospection. This is a data set of randomised patient-level de-identified PBS script claims from 2006 to the present. Currently the data includes over 170 million script claims and over three million patients. It includes all PBS-listed drugs with HIV indications. Our estimate is the number of unique patients in the PBS data who filled in at least one script in the 12 months prior to the end of December 2018 multiplied by 10. We assumed that 10% of the Australian population were sampled to estimate the uncertainty range as a 95% confidence interval (which equates to approximately 5%).

To the PBS number we added an estimate for the number of HIV+ temporary residents taking ART—as temporary residents are ineligible for Medicare and hence are not counted in the in the 10% sample. A recent report by National Association of People with HIV Australia (NAPWHA) and the Kirby Institute estimated there were 763 (assumed range: 650-900) HIV+ temporary residents receiving ART in Australia through compassionate access schemes (personal communication with report authors. We split this estimate into males and females on therapy using the proportions of males and females from the Australian HIV Observational Database Temporary Residents Access Study (ATRAS) [9].

Estimating levels of virological suppression

We define virological suppression as less than 200 viral copies per ml. The proportion of people on antiretroviral therapy with viral suppression is taken to be the proportion of people recorded in the Australian HIV Observational Database (AHOD) who had less than 200 viral copies per ml at their last viral load test. Uncertainty bounds were estimated by calculating the 95% confidence interval for this proportion. We estimate the number of people living

with HIV on antiretroviral therapy with viral suppression by multiplying this proportion and range by the estimated number of people receiving antiretroviral therapy.

PrEP enrolment data and associated estimates

The number of gay and bisexual men receiving PrEP was based on number enrolled in PrEP implementation projects in New South Wales (EPIC-NSW), Queensland (QPrEPd) and Victoria (PrEPX) by the end of 2017.

Hepatitis C diagnosis and care cascade

This cascade was developed collaboratively between the Kirby Institute and the Center for Disease Analysis (<u>centerforda. com</u>). The approach taken to develop the hepatitis C diagnosis and care cascade was informed by recommendations from an Australian stakeholder reference group (see Acknowledgments for members of the reference group).

Number of people living with hepatitis C

This estimate was derived using a difference equation mathematical model, as described below:

- To determine hepatitis C incidence as a result of injecting drug use, the model used estimates of the number of people who had injected drugs in Australia over the last three decades, the pattern of injecting drug use and estimates of hepatitis C incidence among people who inject drugs derived from cohort studies.
- The relative change in incidence since 2005 was informed by hepatitis C notifications in people aged 15–29 years, reflecting the population most at risk of acquiring infection. As the primary route of transmission is injecting drug use, a practice that primarily starts in late adolescence or early adulthood, trends in the rate of notifications in those aged under 30 years can be interpreted as a surrogate for the incidence of hepatitis C.
- The estimates of hepatitis C incidence due to injecting drug use were then adjusted in accordance with epidemiological data to allow for hepatitis C infections through other transmission routes, including infection in migrants.
- The model also includes the effects of treatment with associated sustained virological response rates reflecting treatment regimen, genotype and access to direct-acting antivirals through compassionate access and clinical trials in 2014–2015 and through generic supply in 2015. From 2016 the sustained response rates were based on antiviral treatment from clinical studies and reflected the disease stage at initiation.
- Estimates of the number of people experiencing long-term sequelae of chronic hepatitis C were then obtained from the estimated pattern of hepatitis C incidence using rates of progression derived from cohort studies. People cured with late stages of disease had a lower progression rate to both decompensated cirrhosis and hepatocellular carcinoma.

Estimates of the numbers of people living with chronic hepatitis C in 2018 were adjusted to allow for mortality related to hepatitis C, injecting drug use and unrelated to hepatitis C or injecting.

To produce the model estimates for the number of people living with HCV and the resulting time trends, we first produced a specific estimate for the year 2015 using cumulative notifications and spontaneous clearance, mortality, and migration rate estimates. The estimate of the number of people living with hepatitis C in 2015 is adjusted each year in accordance with updated data. In earlier reports, we assumed there were no duplicate hepatitis C notifications. However, linkage studies being conducted in NSW and Victoria estimate that around 7 to 11% of notifications are duplicates. Given this evidence, we have assumed 9% (range: 7-11%) of all notifications are duplicates nationally (personal communication, Dr Maryam Alavi). Also, recent evidence from British Columbia [10] suggests the spontaneous clearance rate is 28% (3% higher than what we have used in previous reports). This resulted in a 12% reduction in the cumulative number of HCV notifications. The overall estimate of people living with hepatitis C in 2015 is reduced by 17% (from 227,306 to 188,688) using updated data for hepatitis C notifications, mortality, and the number of people treated, as well as the spontaneous clearance rate and duplicates of

notifications. The estimates for the following years reduced similarly from 199,412 to 160,410 in 2016 and 182,285 to 142,070 in 2017.

The model also updated morbidity and mortality due to hepatitis C infections. Previously we compared liver-related mortality from the model with the NSW linkage data and found that the model estimated mortality was too low. To improve our estimates of liver-related mortality in the model, we incorporated the higher risk of developing cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, and liver-related death among the population with excessive alcohol consumption (defined as > 50g per day). For example, people living with HCV who have excessive alcohol consumption are 2.3 (95% CI 1.7 - 3.3) times more likely to have cirrhosis [11, 12]. We used available progression rates for those with and without excessive alcohol consumption from published literature and the percentage of HCV infected people with decompensated cirrhosis or hepatocellular carcinoma that have excess alcohol consumption, based on hospital admissions for alcohol use disorder from the NSW linkage study, which increased from 14% to 51% over 2001–2018. We then adjusted the percentage of people with excessive alcohol consumption who do not have decompensated cirrhosis or hepatocellular carcinoma to match the number of liver-related deaths from the NSW linkage and ETHOS studies [13]. We assumed the same level of excessive alcohol consumption for Australia overall and in each state and territory.

Further information about modelling methods can be obtained by contacting the Surveillance, Evaluation and Research Program, the Kirby Institute, UNSW.

Number of people diagnosed and living with chronic hepatitis C

This estimate was derived from totalling all hepatitis C notifications from 1991 to 2018 and adjusting for duplicates, spontaneous hepatitis C clearance, mortality, hepatitis C cure through treatment, and overseas migration, with adjustments as follows:

- The percentage of all notifications that are duplicates nationally was estimated at 9% (range: 7-11%).
- The proportion with spontaneous hepatitis C clearance was estimated at 28% [10].
- The annual proportion with mortality among people with a hepatitis C notification in NSW (1993–2017) was extrapolated to the total number of hepatitis C notifications in Australia.
- The estimated number of individuals cured of hepatitis was deducted from the number of total hepatitis C notifications.
- The level of overseas migration was assumed to be small, given the characteristics of the infected population, and given by the annual number of permanent departures for the general population divided by the estimated resident population as estimated by the ABS (series 340102).

Number of people who have received a confirmatory RNA test

To estimate the number of people previously diagnosed with hepatitis C (either antibody-positive or by RNA test) who have received an RNA test (to confirm viraemic infection) we used published data from the ETHOS ENGAGE study [13]. Of all people who responded in the survey in 2018-2019 (>1,000 recruited), 75% self-reported HCV confirmatory testing among HCV antibody diagnosed. We assumed this estimate is broadly representative of the chronically infected population. We multiplied this percentage by the number diagnosed and living with chronic hepatitis C to estimate the number diagnosed who have been RNA tested. The range is given by the estimate multiplied by the corresponding lower and upper value for diagnosed with hepatitis C.

Number of people who have ever received hepatitis C treatment

To estimate the numbers of people treated for hepatitis C we totalled the number of prescriptions dispensed to public patients, reported by the Pharmaceutical Benefits Scheme (PBS), since 1997.

- For estimates in 2013–2018, data from longitudinal tracking of a 10% random sample of PBS prescriptions were used.
- For 2014 and 2015, we included estimates for the number of patients receiving direct-acting antiviral therapies through clinical trials, patient access programs and generic drugs.
- For 2016–2018, we assumed all treated patients received direct-acting antivirals following their listing on the PBS. We estimated the number of people receiving treatment in 2016-2018 using the 10% sample of PBS patient-level script claims data provided by the company Prospection. Our estimate is the number of unique patients in the PBS data who filled in at least one script in the 12 months prior to the end of December 2018 multiplied by 10. We assumed that 10% of the Australian population were sampled to estimate the uncertainty range as a 95% confidence interval (which equates to approximately 5%).
- The numbers of interferon-based hepatitis C treatments dispensed were adjusted for multiple counting considering the duration of treatment for each regimen and the treatment compliance rate.
- For genotype-specific regimens, a distribution of 50% genotype 1 and 50% genotypes 2 or 3 was assumed.
- The total number treated was adjusted for annual mortality and overseas migration (using the same overseas migration rate as for the diagnosed stage).
- People who were cured of chronic hepatitis C were assumed to have reduced rates of disease progression to decompensated cirrhosis (76% reduction[14, 15]) and hepatocellular carcinoma (77% reduction[16]). [14, 15]) and hepatocellular carcinoma (77% reduction[16]).
- The cured population with decompensated cirrhosis was assumed to have a 50% reduction in liver-related death rate.
- The general population mortality rate was used for those who were successfully cured. The hepatitis C mortality rate from people with a hepatitis C notification in New South Wales was used for patients who did not achieve sustained virological response.

We estimated the proportion of direct-acting antiviral treatments initiated by patients in each fibrosis stage using REACH-C study data [17] and PBS from March 2016 to June 2018. The number of people on treatment with cirrhosis, decompensated cirrhosis and hepatocellular carcinoma was estimated from data on planned duration.

Number of people who have ever achieved treatment-induced hepatitis C cure

This component was estimated by taking the number of people receiving hepatitis C treatment in each year and multiplying it by the proportion with sustained virological response reported in the literature (regimen-specific). We assumed the following:

- Australian data on the proportion with sustained virological response were prioritised, if available. A distribution of 50% genotype 1 and 50% genotypes 2 or 3 among people receiving hepatitis C treatment was assumed for interferon-based therapies.
- A 95% sustained virological response rate (range: 90–97%) was used for therapies in F0–F3 fibrosis stages and a 90% rate was used in the F4 fibrosis stage (cirrhosis) and for people with decompensated cirrhosis and people with hepatocellular carcinoma.
- The total number cured was adjusted for annual mortality and overseas migration as for the diagnosed and treated stages.

Estimating direct-acting antiviral treatment coverage

We estimated the number of people receiving hepatitis C treatment using a 10% sample of Pharmaceutical Benefits Scheme (PBS); patient-level script claims data provided by the company Prospection. The treatment coverage for HCV in a given year is defined as the number of people who have been treated and are still living in Australia since the end of 2015 at the end of the year divided by the number of people who have lived with chronic hepatitis C since the end of 2015 (including still living with HCV and those cured) at the end of the previous year.

1.3 Hepatitis B diagnosis and care cascade

Cascade estimates were developed by the WHO Collaborating Centre for Viral Hepatitis at the Doherty Institute. The approach taken to develop the hepatitis B diagnosis and care cascade was informed by recommendations from a national stakeholder reference group. This included representatives from: The Kirby Institute; ASHM; Hepatitis Australia; NSW Ministry of Health; Queensland Department of Health; Department of Health and Human Services, Tasmanian Government; Department of Health and Human Services Victoria; WA Health; Australian Government Department of Health; South Australia Health; WHO Collaborating Centre for Viral Hepatitis, The Doherty Institute; Centre for Social Research in Health; Australian Injecting and Illicit Drug Users League; Burnet Institute; Australiaan Sexual Health Alliance; Australian Liver Association; Scarlet Alliance.

Diagnosis

The proportion of people living with chronic hepatitis B who have been diagnosed was estimated using model-derived estimates of the total number of people who have ever had chronic hepatitis B in Australia as the denominator and the cumulative number of notifications of hepatitis B from 1971 to 2018 as the numerator. Mortality is not included in this aspect of the analysis and therefore the proportion derived represents those ever having lived with chronic hepatitis B that have ever been diagnosed.

Monitoring

The number of people who received monitoring for chronic hepatitis B in 2015–2018 was determined using Department of Human Services data regarding rebates for an annual hepatitis B viral load test, which is recommended for all people living with chronic hepatitis B. This item is specific to people living with chronic hepatitis B who are not receiving treatment and is limited to one test per year. The number of viral load tests was adjusted to account for the use of the on-treatment Medicare Benefit Schedule item in those not on treatment for billing purposes.

Treatment

The number of people receiving treatment for chronic hepatitis B in 2015–2018 was derived using pharmaceutical dispensing data from the Department of Human Services Australia regarding the number of scripts dispensed for treatment indicated for hepatitis B virus infection (adefovir, entecavir, lamivudine, telbivudine, tenofovir and pegylated interferon). Patient-level estimates, allowing removal of those receiving tenofovir for the treatment of HIV and to avoid duplication of people receiving combination therapy, were used for validation.

Detailed methodology and source references can be found in the published paper which described the derivation of these estimates[18] and in the methods of the National Hepatitis B Mapping Project Reports (http://www.ashm.org.au/ HBV/more-about/hepatitis-b-mapping-project).

A combined estimate of people in care for chronic hepatitis B was derived by combining the number who received monitoring while not on treatment and those on treatment. Each of these estimates is expressed as a proportion of the total number living with chronic hepatitis B as derived using the prevalence methodology outlined above.

Kirby Institute

Number of people living with hepatitis B

The estimate of the number of people living with hepatitis B virus infection in Australia was developed by the WHO Collaborating Centre for Viral Hepatitis at the Doherty Institute, using a deterministic compartmental mathematical model of hepatitis B virus infection in the Australian population from 1951 to 2050. The model was parameterised using a wide range of data sources including the Australian Bureau of Statistics (ABS), existing mathematical models, surveillance notifications, epidemiological research and clinical studies. Important factors such as migration, attributable and all-cause mortality, the ageing of the population, the variable natural history of chronic hepatitis B infection, the impact of treatment and vaccination were all incorporated. The changing prevalence over time, due

predominately to increases in infant vaccination in migration source countries, was accounted for in this updated model used prevalence estimates across different time periods and applied these to migration data according to age group and year of arrival for countries of birth for the majority of migrants to Australia. Model construction included sensitivity analyses around critical parameters such as the force of infection (FoI) and migration estimates. Model outcomes have been validated using a range of external data, particularly national and Victorian serosurvey results. These were not used to parameterise the model to allow independent comparison with modelled outcomes. The plausible range estimated for the number of individuals living with chronic hepatitis B for 2014–2017 was derived by allowing the FoI and the proportion of migrants entering the population with chronic hepatitis B to vary according to a given distribution.

These distributions were chosen to reflect prior knowledge regarding the Fol within Australia and prevalence of chronic hepatitis B in source countries. This was achieved by using Latin hypercube sampling; for full details of this technique see reference [19]. The mathematical model described above was run using 1000 different combinations of the parameters being varied, which produced a range of overall estimates. The minimum and maximum estimates produced by the model were taken to define the plausible range around the point estimate value.

The national model was applied to each state and territory using state-specific demographic information obtained from the ABS including births, deaths, migration and age distribution. Some of the data sources differed from the national model due to availability and appropriateness of data.

Hepatitis B prevalence according to population

The proportion of people living with chronic hepatitis B in each population group and the relative prevalence in each was determined using the Census method, attributing prevalence of chronic hepatitis B by country of birth, Aboriginal and Torres Strait Islander status, and other risk status applied to Australian population data provided in the 2016 Census.

The estimated prevalence of chronic hepatitis B according to country of birth was derived from combining multiple published sources into an average point estimate. The estimates used comprised two Australian antenatal seroprevalence studies[20, 21], the estimates from which were then adjusted upwards to account for the disparity in prevalence between men and women as identified in an Australian seroprevalence study;^[65] a study of hepatitis B

prevalence in migrants to the United States[22]; and the most recent global seroprevalence study conducted as part of the Global Burden of Disease Project[23]. The Australian prevalence figure was obtained from local modelled estimates as described above. Detailed methodology and sources, including individual seroprevalence estimates and population figures, can be obtained from the published paper[24].

Prevalence estimates for Aboriginal women giving birth are from two published studies. The New South Wales study [25] linked data from two statutory registers, the NSW Perinatal Data Collection (which records all births in NSW of babies at least 400 grams birthweight or 20 weeks gestation) and the NSW Notifiable Conditions Information System (which records all notifications of conditions notifiable under the NSW Public Health Acts 1991 and 2010). The study

was limited to women resident in NSW, of reproductive age (10–55 years at time of giving birth), who gave birth to their first shild between January 2000 (when routine a

to their first child between January 2000 (when routine antenatal screening began) and December 2012.

The Northern Territory study linked data from the Northern Territory Perinatal Register (which records all births in the Northern Territory of babies at least 400 grams birthweight or 20 weeks gestation) and the Northern Territory Notifiable Diseases System (which contains a record of every diagnosis of hepatitis B in the Northern Territory). The study [26] was limited to all women giving birth in as public patients in the Northern Territory between September 2005 and 31 December 2010. Women born overseas or not usually resident in the Northern Territory were excluded.

1.4 The chlamydia diagnosis and care cascade

Chlamydia notifications

We obtained the number of chlamydia notifications for 15-29-year-old males and females in Australia directly from **te** National Notifiable Diseases Surveillance System (NNDSS).

Estimating new infections

New Chlamydia infections were estimated using the modelling approach described elsewhere [27]. This method uses a Bayesian statistical approach to calibrate model parameters to the notifications data from NNDSS, the number of tests for chlamydia obtained by Medicare (item numbers 69316, 69317, and 69319), and annual population estimates for each sex and age group published by the Australian Bureau of Statistics (ABS) over 2001-2018. Model outcomes were validated through comparison against chlamydia prevalence among 16-29-year-olds measured in 2011 by the Australian Chlamydia Control Effectiveness Pilot (ACCEPt).

The model outputs 95% credible intervals for the annual number of incident chlamydia cases in 15-19-year, 20-24-year, and 25-29-year-old males and females. We summed the incident chlamydia cases for each age group to estimate the number of new infections. The range corresponds to the lower and upper bound of the credible intervals with the midpoint corresponding to our best estimate.

Estimating treatment and re-testing

We estimated chlamydia treatment following diagnosis and retesting after treatment using multiple sources describing chlamydia infection and care across urban, regional, and remote areas and multiple service contexts.

From the NNDSS notifications data 74.4%, 21.7%, and 3.9% of notifications in 15-29-year-olds occur across urban, regional, and remote areas respectively. Based on a previous published study in 2013, 11% of these notifications occurred in sexual health clinics [28]. We divided the remainder of notifications into those made in general practice (80%) and other contexts (9%) using data from the first Australian Study of Health and Relationships data published in 2014 [29].

Treatment following diagnosis

Based on data from NSW sexual health clinics almost all people diagnosed with chlamydia in urban and regional areas were treated (ranging from 99-100% of those diagnosed) in 2013 [30]. In NSW remote areas the percentage diagnosed is a little lower at 96% [30]. A published study in 2014 produced a lower estimate of 85% for remotes areas in the Northern Territory [31]. Data from Western Australian general practices suggest a much lower rate of treatment with 92% receiving a script for treatment after diagnosis [32]. Based on this data we assumed 92% of

patients attending urban and regional general practice clinics receive treatment with 99% of patients in other clinical settings receiving treatment.

In remote areas, we assumed 90% of those diagnosed were treated. Taking a weighted average by multiplying the notifications breakdown across regions by the estimated percentage treated, we estimate 93.4% of people diagnosed with chlamydia were treated in 2016. We assumed a range from 90% (corresponding to the percentage treated in remote areas) to 100%. Assuming the same treatment proportion and range for males and females and multiplying by the number of notifications we estimated the number of 15-29-year-old males and females who received treatment after diagnosis.

Re-testing after treatment

From the Australian Collaboration for Coordinated Enhanced Sentinel Surveillance of STIs and BBVs (ACCESS), 12-28% of 15-29-year-olds diagnosed with chlamydia nationally were re-tested for chlamydia within 1.5 to 6 months after treatment. In general practice, the re-testing percentage ranges from 13 to 20%. In urban sexual health clinics, the re-testing rate is higher ranging from 50% to 52%. For regional and remote sexual health clinics, 31-38% of males and females re-tested within 1.5 to 6 months after treatment. Taking a weighted average by multiplying the notifications breakdown across regions by the notifications breakdown across contexts we estimate 18.3% of people diagnosed with chlamydia are re-tested after treatment. We assumed a range from 12.0 to 28.3% (corresponding to the range in percentage re-tested across all estimates). Males had a lower re-testing percentage than females, 14.5% (range: 8.8-24.4%) vs 21.2% (range: 14.2-31.1%), respectively. Applying these re-testing percentages and range for males and females and multiplying by the number of notifications we estimated the number of 15-29-year-old males and females who re-tested for chlamydia after treatment.

1.5 The gonorrhoea diagnosis and care cascade

Estimating new infections

The number of new gonorrhoea infections was calculated by applying an incidence estimate of 25.31 per 100 years (range: 24.27-25.95; from ACCESS sexual health clinic data weighted by HIV-positive status) to a population estimate of 1185 781 (167 203 – 204 359) sexually active gay and bisexual men in Australia. The population estimate was derived by multiplying the ABS estimate for males aged 16-69 years (8 591 418) to estimates of the proportion of gay and bisexual identified men (3.2%) with same-sex experience in the last 12 months (68%) taken from the second Australian Study of Health and Relationships [76] with an assumed range of +/- 10%.

Notifications

We obtained the number of gonorrhoea notifications for gay and bisexual men in Australia by first calculating the proportion of 2018 notifications in males in major cities (70.4%) and other areas of residence (45.1%) attributable to male to male sex, in jurisdictions (Australian Capital Territory, New South Wales, Victoria, Western Australia, South Australia, Tasmania) which collect enhanced data. These proportions were then applied to gonorrhoea notifications among men in major cities and other areas of residence in jurisdictions which do not collect enhanced data (Queensland and Northern Territory) to derive a national estimate of notifications among gay and bisexual men in 2017.

Treatment

Based on data from sexual health clinics from the ACCESS network, it was estimated that 87.7% (95% CI: 86.6-88.7%) of all gay and bisexual men diagnosed with gonorrhoea in 2018 received treatment.

Re-testing after treatment

Based on data from sexual health clinics from the ACCESS network, it was estimated that 42.9 (95% CI: 40.7-45.1%) of all gay and bisexual men who received treatment for gonorrhoea in 2018 were re-tested within 1.5 to 6 months after treatment.

1.6 The Australian Collaboration for Coordinated Enhanced Sentinel Surveillance (ACCESS)

Briefly, the ACCESS project is a national sexual health surveillance network using routinely collected de-identified demographic, testing, diagnosis and treatment data from health services and laboratories across Australia to monitor the sexual health of high-risk population groups including gay and bisexual men, injecting drug users, Aboriginal and

Torres Strait Islander people, sex workers and young people. The ACCESS project has been described in more detail elsewhere [27]. The project is managed collaboratively between the Kirby Institute, the Burnet Institute and the National Reference Laboratory. In total, ACCESS collects data from over 110 health services, pharmacies and laboratories.

ACCESS data were used for the following indicators:

- Among people attending high-caseload general practice clinics and/or sexual health clinics, the proportion tested for HIV and, where relevant, retested.
- The result of the last viral load test among HIV-positive patients seen at high-caseload general practice clinics and/or sexual health clinics.
- HIV incidence, estimated using methodology similar to that used previously [33]. HIV incidence was calculated based on an observed positive HIV test in patients with more than one HIV test with the first test result being negative. Patients were at risk between the first negative HIV test and the later of last-ever negative HIV test or seroconversion (the midpoint between last negative HIV-test and first positive HIV-test). For any calendar year, at-risk time commenced from the later of: (a) 1 January for that year and (b) first-ever negative HIV test if in that year until the earlier of: (a) seroconversion date, last-ever negative HIV test if not HIV-positive and b) 31 December for that year. HIV incidence and confidence intervals were calculated using the person-years method.
- The incidence of chlamydia, gonorrhoea and infectious syphilis among selected priority populations.
- Proportion of diagnoses of genital warts at first visit to sexual health clinics, by select population.

1.7 Medicare

Medicare is delivered by the Australian Government Department of Human Services and pays rebates on specified services and procedures. Publicly available Medicare online data on number of tests for *Chlamydia trachomatis* as identified by item numbers 69316, 69317 and 69319 were obtained by sex, age, state and quarter (medicarestatistics. humanservices.gov.au/statistics/mbs_item.jsp#info).

1.8 National Centre for Immunisation Research and Surveillance (NCIRS)

The primary function of NCIRS is to perform research aimed at reducing the incidence of vaccine-preventable diseases and improving vaccine uptake, in children and adults, including surveillance. Hepatitis B vaccine coverage was estimated using data from the NCIRS surveillance of immunisation coverage and the Australian Childhood Immunisation Register.

1.9 Pharmdash

Data on dispensed prescriptions for a Pharmaceutical Benefits Scheme (PBS) 10% sample is updated every quarter and supplied to a number of approved users or clients including Prospection, which provides a dashboard interface

(Pharmdash) for querying the PBS 10% sample

(pbs.gov.au/info/industry/useful-resources/sources/). The 10% sample of the PBS is a randomised patient-level de-identified PBS script claims database from 2006 to the present.

Currently the database has 170 million script claims and three million patients. It includes all PBS-listed drugs with HIV indications.

Pharmdash data were used for the following indicators:

- The number of people receiving antiretroviral treatment. The overall total number of people receiving antiretroviral ٠ therapy was taken as the number of unique patients in the PBS data who filled at least one script in the 12 months prior to the end of December 2017 multiplied by 10. Given the size of the sample we assumed a negligible range in this estimate.
- Total number of patients receiving treatment for HIV per year. The overall total number of people receiving antiretroviral therapy was taken as the number of unique patients in the PBS data who filled at least one script in the 12 months prior to the end of December 2017 multiplied by 10. Similarly estimates of patient numbers dispensed individual antiretroviral drug types were developed.

2 Medical and epidemiological terms

age-standardised rate of infection: The proportion of and penile discharge in men, and to painful urination and infected people in a particular population, adjusted mathematically to account for the age structure of the population so that comparisons can be made between populations with different age structures (i.e. with more or fewer younger people).

AIDS: Acquired immunodeficiency syndrome, the spectrum of conditions caused by damage to the immune system in advanced HIV infection.

by postcode, are classified into one of three and remote or very remote areas (i.e. areas with relatively unrestricted, partially restricted and restricted access to goods and services).

bacterium: A type of single-celled micro-organism.

bleeding between menstrual periods in women. Complications of chlamydia can be serious for women, including pelvic inflammatory disease, ectopic pregnancy and infertility. Throat and anal infections do not usually cause symptoms. Chlamydia is curable by antibiotics.

congenital: A condition (disease or physical abnormality) present from birth. Congenital conditions may be inherited; or acquired during foetal development or at birth.

area of residence: Locations of residence, indicated diagnosis: A labelling or categorisation of a condition, usually by a doctor or other healthcare professional, on the basis of categories: major cities, inner or outer regional areas, testing, observable signs and symptoms reported by the patient. 'Newly diagnosed infection' means that a person previously not known to have the infection has been tested and now found to have the infection.

Some bacteria cause illness in humans, and most can deoxyribonucleic acid (DNA): is an acid in the chromosomes in be treated with antibiotics.

chlamydia: A sexually transmissible infection caused by a bacterium (Chlamydia trachomatis). The infection causes no symptoms in about 80% of cases. In people with symptoms, the infection causes inflammation of the urethra (the tube through which urine passes out of the body), leading to some pain

the centre of the cells of living things. DNA determines the particular structure and functions of every cell and is responsible for characteristics being passed on from parents to their children.

donovanosis: A sexually transmissible infection caused by a bacterium, *Klebsiella (or Calymmatobacterium) granulomatis*. The most common symptom is the presence of one or more painless ulcers or lesions in the genital or anal regions. If not treated, the ulcers or lesions can progress and become complicated by other bacterial infections, ultimately resulting in damage to the affected part of the body. Donovanosis is curable by antibiotics. Donovanosis was once common in central and northern Australia, and is now very rare.

endemic: A disease is endemic if it is common in a region or local area, or in a group of people

gonorrhoea: A sexually transmissible infection caused by a bacterium (Neisseria gonorrhoeae). Gonorrhoea has no symptoms in about 80% of women and 50% of men. Symptoms are similar to those of chlamydia, as are the complications. Most men with urethral gonorrhoea will eventually develop symptoms. Throat and anal infections do not usually cause symptoms. Gonorrhoea can be cured with antibiotics.

hepatitis B virus infection: A viral infection transmissible by blood and sexual contact and from mother to child at birth. Most healthy adults will not have any symptoms and are able to get rid of the virus without any problems. Some adults are unable to get rid of the virus, leading to chronic infection. The focus of this report is chronic hepatitis B infection. 'Newly diagnosed' hepatitis B infection means that a person previously not known to have the infection has been tested and now found to have the infection. 'Newly acquired' infections are those that have been acquired within the past two years.

hepatitis C virus infection: A viral infection transmissible by blood contact as well as from mother to newborn. Some people get rid of the virus, but the majority develop ongoing chronic infection. The focus of this report is chronic hepatitis C infection. 'Newly diagnosed' hepatitis C infection means that a person previously not known to have the infection has been tested and now found to have the infection. 'Newly acquired' infections are

those that have been acquired within the past two years.

irby Institute

human immunodeficiency virus (HIV): HIV is to AIDS.

human papillomavirus (HPV) infection: Of over 140 types of HPV that infect humans, about 40 affect the anal and genital area, mostly without causing any disease. This subset of HPV types is sexually transmissible and is occasionally transmitted from mother to child. Two HPV types (6 and 11) cause most genital warts. Two other HPV types (16 and 18) cause most cervical and anal cancers, and an increasing proportion of mouth and throat cancers. Many less common HPV types also occasionally cause cancers. Most people acquire at least one genital HPV infection through their lives, but the great majority clear the infection.

incidence: The rate at which a condition occurs in a population, usually expressed as the number of diagnoses (or pregnancies, injuries etc.) over a period of time during which people are exposed to risk (see person-years). Incidence is an important indicator of new transmissions, reflecting the impact of current prevention programs, whereas prevalence reflects the burden of disease

infection: The condition of having bacteria or viruses multiplying in the body. Many infections cause no symptoms, so the person may be unaware they have an infection unless they are tested.

newly acquired HIV: This means the person has become infected within the past year.

newly diagnosed HIV: This means that a person previously not known to have the virus has been tested and now found to have the virus.

notifiable disease: A disease is notifiable if doctors and/or laboratories are required to report cases to the authorities for disease surveillance, i.e. monitoring of disease at population level.

person-years: A measure of the incidence of a condition (e.g. a transmissible by sexual and blood contact as well as disease or pregnancy) over variable time periods. If 100 people from mother to child. If untreated, HIV can progress are exposed to the risk of an infection for a year, or 50 people are exposed for two years, the number of infections can be reported 'per 100 person-years'.

prevalence: The number of cases of a condition at a single time, usually expressed as a proportion (percentage, or per 100 000 people) of the population. Prevalence decreases if people with the condition die or are cured, and increases as new cases occur.

primary HIV infection (or seroconversion illness): A flu-like illness that occurs soon after infection with HIV.

ribonucleic acid: is a polymeric molecule essential in various biological roles in coding, decoding, regulation, and expression of genes.

symptom: A physical or mental indication of a disease or condition experienced by the patient.

syphilis: An infection caused by the bacterium Treponema pallidum. It is transmissible by sexual contact as well as from mother to child. Congenital syphilis occurs when the fetus is infected during pregnancy. Infectious syphilis is defined as infection of less than two years' duration. The main symptoms include a painless ulcer at the site of infection within the first few weeks of infection, followed by other symptoms (e.g. rash) a couple of months later. Often symptoms are not detected. In the absence of treatment, there will then be a period of several years without any symptoms, with a chance of a range of complications over decades that can involve the skin, bone, central nervous system and cardiovascular system. Infectious syphilis is fully curable with a single injection of long-acting penicillin.

virus: A very small microscopic infectious agent that multiplies inside living cells. Antibiotics are not effective against viral infections, so treatment requires antiviral drugs.

For more information on sexually transmissible infections see the Australian STI management guidelines for use in primary care [34].

3 Acknowledgments

Groups and committees involved in the development of the Surveillance Report, as well as the individuals and organisations that provided data for inclusion in this report, are listed below. The Aboriginal and Torres Strait Islander report was initially developed by Professor James Ward.

The National Bloodborne Virus and Sexually Transmissible Infections (NBBVSTI) Surveillance Subcommittee 2018

- Dr Christine Selvey (Chair), New South Wales Ministry of Health, Sydney, NSW
- Ms Amy Bright, Office of Health Protection, Australian Government Department of Health, Canberra, ACT
- Mr Aaron Cogle, National Association of People with HIV Australia, Sydney, NSW
- Associate Professor Benjamin Cowie, WHO Regional Reference Laboratory for Hepatitis B, Victorian Infectious Diseases Reference Laboratory, The Doherty Institute, Melbourne, VIC
- Ms Carol El-Hayek, Burnet Institute, Melbourne, VIC
- Ms Carolien Giele, Communicable Disease Control Directorate, Public Health Division, Department of Health, Western Australia, Perth, WA
- Professor Margaret Hellard, Burnet Institute, Melbourne, VIC
- Ms Jo Holden, New South Wales Ministry of Health, Sydney, NSW
- Ms Nasra Higgins, Department of Health and Human Services Victoria, State Government of Victoria, Melbourne, VIC
- Ms Rebecca Hundy, Australian Capital Territory Health, Canberra, ACT
- Professor Monica Lahra, Division of Microbiology and WHO Collaborating Centre for STD, The Prince of Wales Hospital, Sydney, NSW
- Dr Carolyn Lang, Communicable Diseases Branch, Queensland Department of Health, Brisbane, QLD
- Ms Kerryn Lodo, Department of Health and Human Services, Tasmanian Government, Hobart, TAS
- Ms Jennifer MacLachlan, WHO Regional Reference Laboratory for Hepatitis B, Victorian Infectious Diseases Reference Laboratory, The Doherty Institute, Melbourne, VIC
- Dr Limin Mao, Centre for Social Research in Health, UNSW Sydney, Sydney, NSW
- Ms Shellee Williams, Centre for Disease Control, Northern Territory Department of Health, Darwin, NT
- Dr Russell Waddell, Australasian Chapter of Sexual Health Medicine, Sydney, NSW; SA Health, Adelaide, SA
- Associate Professor James Ward, South Australian Health and Medical Research Institute, Adelaide, SA
- Professor Rebecca Guy, Professor John Kaldor, Dr Skye McGregor, Mr Jonathan King, Ms Jane Costello, Ms Morgan Stewart, The Kirby Institute, UNSW Sydney, Sydney, NSW

Annual Surveillance Report 2018 Advisory Committee

• Ms Amy Bright, Office of Health Protection, Australian Government Department of Health, Canberra, ACT

- Mr Aaron Cogle, National Association of People with HIV Australia, Sydney, NSW
- Ms Jules Kim, Scarlet Alliance, Sydney, NSW
- Mr Scott McGill, Australasian Society for HIV, Viral Hepatitis and Sexual Health Medicine, Sydney, NSW
- Ms Jennifer MacLachlan, WHO Regional Reference Laboratory for Hepatitis B, Victorian Infectious Diseases Reference Laboratory, The Doherty Institute, Melbourne, VIC
- Dr Limin Mao, Centre for Social Research in Health, UNSW Sydney, Sydney, NSW
- Dr Jeanne Ellard, Australian Federation of AIDS Organisations, Sydney, NSW
- Ms Helen Tyrrell, Hepatitis Australia, Canberra, ACT
- Dr Russell Waddell, Australasian Chapter of Sexual Health Medicine, Sydney, NSW; SA Health, Adelaide, SA
- Ms Melanie Walker, Australian Injecting & Illicit Drug Users League, Canberra, ACT
- Professor Rebecca Guy (Chair), Professor Basil Donovan, Professor Lisa Maher, Professor John Kaldor, Dr Jennifer Iversen, Dr Benjamin Bavinton, Dr Skye McGregor, Dr Hamish McManus, Dr Praveena Gunaratnam, Ms Jane Costello, The Kirby Institute, UNSW Sydney, Sydney, NSW

ACCESS (Australian Collaboration for Coordinated Enhanced Sentinel Surveillance)

- Canberra Sexual Health Centre, Canberra; Interchange General Practice, Canberra; ACT
- Liverpool Sexual Health Clinic, Liverpool; Coffs Harbour Sexual Health Clinic, Coffs Harbour; Grafton Sexual Health Clinic, Grafton; Albury Sexual Health Clinic, Albury; Goulburn Sexual Health Clinic, Goulburn; Griffith Sexual Health Clinic, Griffith; Narooma Sexual Health Clinic, Narooma; Queanbeyan Sexual Health Clinic, Queanbeyan; Wagga Sexual Health Clinic, Wagga Wagga; Holden Street Clinic, Gosford; Newcastle Sexual Health Clinic, Forster; Bligh Street Clinic, Tamworth; Taree Manning Clinic, Taree; Illawarra Sexual Health Clinic, Warrawong; Nowra Sexual Health Clinic, Nowra; Kirketon Road Centre, Darlinghurst; Clinic 180, Potts Point; Lismore Sexual Health Service, Lismore; Tweed Heads; Clinic
- 16, North Shore Sexual Health Service, Sydney; Manly Sexual Health Clinic, Sydney; RPA Sexual Health Clinic, Sydney; Short Street Centre Sexual Health Clinic, Kogarah; Western Sydney Sexual Health Centre, Parramatta; Mt Druitt Sexual Health Clinic (formerly Luxford Road Sexual Health Clinic), Mt Druitt; Blue Mountains Sexual Health Clinic, Katoomba; Nepean Sexual Health Clinic, Penrith; Sydney Sexual Health Centre, Sydney; WAYS Youth Health Clinic, Bondi Junction; Lightning Ridge Sexual Health Service, Lightning Ridge; Bourke Sexual Health
- Service, Bourke; Dubbo Sexual Health, Dubbo; Orange Sexual Health Clinic, Kite Street Community Health Centre, Orange; Broken Hill Sexual Health, Broken Hill; a[TEST], Darlinghurst; a[TEST], Newtown; Bungendore Medical Centre, Bungendore; East Sydney Doctors, Darlinghurst; Fountain Street General Practice, Alexandria; Macleay Street Medical, Potts Point; UNSW Health Service, Kensington; Taylor Square Private Clinic, Surry Hills; Dr Doong Practice, Burwood; Kildare Road Medical Centre, Blacktown; Waterloo Medical Centre, Waterloo; Holdsworth House Medical Practice, Darlinghurst; Family Planning NSW; Westmead Hospital, Westmead; Immunology B Ambulatory Care, St Vincent's Hospital, Darlinghurst; NSW
- Clinic 34 Darwin and Clinic 34 Alice Springs, Sexual Health and Blood Borne Virus Unit, Centre for Disease Control, Department of Health, Darwin, NT
- Cairns Sexual Health Clinic, Cairns; Gold Coast Sexual Health Service, Miami; Princess Alexandra Sexual Health, Woolloongabba; Townsville Sexual Health Service, Townsville; Mackay Sexual Health Clinic, Mackay; Mount Isa Sexual Health Clinic, Mount Isa; Palm Island Sexual Health Clinic, Palm Island; QLD
- Clinic 275 Sexual Health, Adelaide; O'Brien Street General Practice, Adelaide; Rapido Testing Service, Shine SA, Adelaide; SA
- Hobart Sexual Health Service, Hobart; Launceston Sexual Health Service, Launceston; Devonport Sexual Health Service, Devonport; TAS
- Melbourne Sexual Health Centre, Melbourne; Barwon Reproductive and Sexual Health (BRASH) Clinic, Geelong; Centre Clinic, St Kilda; Frankston Health, Frankston; Cohealth (formerly known as North Yarra Community Health), Collingwood; North Richmond Community Health, Richmond; Bendigo Community Health Clinic, Bendigo; EACH Social and Community Health, Melbourne; Dandenong Superclinic, Dandenong; Prahran Market Clinic, Prahran; Northside Clinic, North Fitzroy; Family Planning Victoria, Melbourne; Clarinda Medical Centre, Clarinda; The Alfred Hospital, Melbourne; VIC
- Fremantle Hospital Sexual Health Clinic, Fremantle; M Clinic, Perth; GP on Beaufort, Mount Lawley; WA

Collaboration of Australian Needle and SyringePrograms

• Directions ACT, Canberra; ACT

 ACON Hunter; First Step Program Port Kembla; Hunter Harm Reduction Services,

Newcastle; Kirketon Road Centre and Clinic 180, Kings Cross; Mid North Coast Harm Reduction, Coffs Harbour; NSW Users and AIDS Association, Surry Hills; Northern NSW Harm Reduction, Ballina, Byron Bay, Lismore, Nimbin, and Tweed Heads; Sydney Harm Minimisation, Redfern, Canterbury and RPA Hospital; South Court Primary Care NSP, Nepean; Western Sydney HIV/ Hepatitis C Prevention Service, Blacktown, Mount Druitt and Parramatta; NSW

- Northern Territory AIDS and Hepatitis C Council, Alice Springs, Darwin and Palmerston; NT
- Biala Community Alcohol and Drug Services, Brisbane; Cairns ATODS NSP, Cairns; Queensland Injectors Health Network, Brisbane, Gold Coast and Sunshine Coast; Kobi House, Toowoomba; West Moreton Sexual Health Service, Ipswich; Townsville ATODS NSP; QLD
- Drug and Alcohol Services South Australia, Adelaide; Anglicare Salisbury, Salisbury; Drug Arm, Warradale; Hindmarsh Centre, Hindmarsh; Noarlunga Community Health Service, Noarlunga; Nunkuwarrin Yunti Community Health Centre, Adelaide; Port Adelaide Community Health Centre, Port Adelaide; Street Link Youth Health Service, Adelaide; SA
- Anglicare NSP Service, Hobart and Glenorchy; Clarence Community Health Centre, Clarence; Burnie NSP Service, Burnie; TAS
- Barwon Health Drug and Alcohol Services, Geelong; Health Information Exchange, St Kilda; Health Works, Footscray; Inner Space, Collingwood; North Richmond NSP, North Richmond; Southern Hepatitis/HIV/AIDS Resource and Prevention Service, Melbourne: VIC.
- Hepatitis WA, Perth: WA AIDS Council Mobile Exchange, Perth; Western Australia Substance Users Association, Perth and South Coast; WA.
- St Vincent's Centre for Applied Medical Research and NSW State Reference Laboratory for HIV at St Vincent's Hospital, Sydney, NSW

Collaboration of National Prison Entrants' Bloodborne Virus Survey State and Territory Sites

- ACT Corrections Health; Alexander Maconochie Centre, ACT
- NT Department of Correctional Services; Prison Health Top End Health Services; Prison and Watch House Health Service Central Australia; Darwin Correctional Centre; Alice Springs Correctional Centre, NT
- QLD Corrective Services; QLD Department of Health; Prison Health Services, West Moreton Hospital and Health Service; Cairns & Hinterland Hospital and Health Service; Arthur Gorrie Correctional Centre, Wacol; Brisbane Correctional Centre; Brisbane Women's Correctional Centre; Lotus Glenn Correctional Centre, Mareeba, QLD
- SA Department of Correctional Services; SA Prison Health Services; Adelaide Remand Centre; Adelaide Women's Prison; City Watch House, Adelaide; Yatala Labour Prison; Port Augusta Prison, SA
- TAS Correctional Health Services; Hobart Reception Prison; Launceston Reception Prison; Risdon Prison Complex, Mary Hutchinson Women's Prison, TAS
- Corrections Victoria; Justice Health Victoria; Dame Phyllis Frost Centre, Ravenhall; Melbourne Assessment Prison; Melbourne Reception Prison, VIC
- Justice Health and Forensic Mental Health Network; Cessnock Correctional Centre; Metropolitan Remand and Reception Centre, Silverwater; Parklea Correctional Centre; Silverwater Women's Correctional Centre; South Coast Correctional Centre, Nowra; Tamworth Correctional Centre, NSW
- WA Corrective Services; Bandyup Women's Prison, Middle Swan; Hakea Prison, Canning Vale; Greenough Regional Prison, Narngulu, WA

Genital Warts Surveillance Network

- Canberra Sexual Health Centre, Canberra; ACT
- Liverpool Sexual Health Clinic, Liverpool; Coffs Harbour Sexual Health Clinic, Coffs Harbour; Grafton Sexual Health Clinic, Grafton; Albury Sexual Health Clinic, Albury; Goulburn Sexual Health Clinic, Goulburn; Griffith Sexual Health Clinic, Griffith; Narooma Sexual Health Clinic, Narooma; Queanbeyan Sexual Health Clinic, Queanbeyan; Wagga Sexual Health Clinic, Wagga Wagga; Holden Street Clinic, Gosford; Newcastle Sexual Health Clinic, Forster; Bligh Street Clinic, Tamworth; Taree Manning Clinic, Taree; Illawarra Sexual Health Clinic, Warrawong; Nowra Sexual Health Clinic, Nowra; Kirketon Road Centre, Darlinghurst; Clinic 180, Potts Point; Lismore Sexual Health Service, Lismore; Tweed Heads; Clinic 16,
- North Shore Sexual Health Service, Sydney; Manly Sexual Health Clinic, Sydney; RPA Sexual Health Clinic, Sydney; Short Street Centre Sexual Health Clinic, Kogarah; Western Sydney Sexual Health Centre, Parramatta; Mount Druitt Sexual Health Clinic (formerly Luxford Road Sexual Health Clinic), Mount Druitt; Blue Mountains Sexual Health Clinic, Katoomba; Nepean Sexual Health Clinic, Penrith; Sydney Sexual Health Centre, Sydney; WAYS Youth Health Clinic, Bondi Junction; Lightning Ridge Sexual Health Service, Lightning Ridge; Bourke Sexual Health Service, Bourke; Dubbo Sexual Health, Dubbo; Orange Sexual Health Clinic, Kite Street Community Health Centre, Orange; Broken Hill Sexual Health, Broken Hill; a[TEST], Darlinghurst; a[TEST], Newtown; NSW
- Alice Springs Clinic 34, Alice Springs; Darwin Clinic 34, Darwin; NT
- Cairns Sexual Health Clinic, Cairns; Gold Coast Sexual Health Service, Miami; Princess Alexandra Sexual Health, Woolloongabba; Townsville Sexual Health Service, Townsville; Mackay Sexual Health Clinic, Mackay; Mount Isa Sexual Health Clinic, Mt Isa; Palm Island Sexual Health Clinic, Palm Island; QLD
- Clinic 275 Sexual Health, Adelaide; SA
- Hobart Sexual Health Service, Hobart; Launceston Sexual Health Service, Launceston; Devonport Sexual Health Service, Devonport; TAS

• Melbourne Sexual Health Centre, Melbourne; Barwon Reproductive and Sexual Health Clinic, Geelong; VIC

• Fremantle Hospital Sexual Health Clinic, Fremantle; WA

National Organisations

- Australasian Sexual Health Alliance, Sydney, NSW
- Australasian Society for HIV, Viral Hepatitis and Sexual Health Medicine, Sydney, NSW
- Australasian Society for Infectious Diseases, Melbourne, VIC
- Australian Federation of AIDS Organisations, Sydney, NSW
- Australian Government Department of Health, Canberra, ACT
- Australian Injecting and Illicit Drug Users League, Canberra, ACT
- Australian Institute of Health and Welfare, Canberra, ACT
- Australian Paediatric Surveillance Unit, Westmead, NSW
- Australian Red Cross Blood Service, Melbourne, VIC
- Centre for Social Research in Health, UNSW Sydney, Sydney, NSW
- Communicable Diseases Network Australia, Canberra, ACT
- Hepatitis Australia, Canberra, ACT
- Macfarlane Burnet Institute for Medical Research and Public Health, Prahran, VIC
- National Aboriginal Community Controlled Health Organisation, Canberra, ACT
- National Association of People with HIV Australia, Sydney, NSW
- National Serology Reference Laboratory, Australia, Fitzroy, VIC
- Scarlet Alliance, Australian Sex Workers Association, Sydney, NSW
- WHO Regional Reference Laboratory for Hepatitis B, Victorian Infectious Diseases Reference Laboratory, The Doherty Institute, Melbourne, VIC

State/Territory Health Departments

- Rachel Crane, Communicable Disease Control Section, Health Protection Service, ACT Government, Canberra, ACT
- Vicki Bowden, Kwendy Cavanagh, Communicable Diseases Branch, Health Protection NSW, NSW Health, NSW Government, North Sydney, NSW
- Rebecca Payne, Sexual Health and Blood Borne Virus Unit, Centre for Disease Control, Northern Territory Department of Health, Northern Territory Government, Darwin, NT
- Carolyn Lang, Damin Si, Communicable Diseases Branch, Queensland Department of Health, Queensland Government, Brisbane, QLD
- Ingrid Tribe, Communicable Disease Control Branch, SA Health, Government of South Australia, Adelaide SA
- Kerryn Lodo, Cameron Sault, Department of Health and Human Services, Tasmanian Government, Hobart, TAS
- Nasra Higgins, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Department of Health and Human Services Victoria, State Government of Victoria, Melbourne, VIC
- Carolien Giele, Byron Minas, Communicable Disease Control Directorate, WA Department of Health, Government of Western Australia, Perth, WA

- 1. van Buuren, S. and K. Groothuis-Oudshoorn, *mice: Multivariate Imputation by Chained Equations in R.* 2011, 2011. **45**(3): p. 67.
- 2. Nakhaee, F., et al., *Changes in mortality following HIV and AIDS and estimation of the number of people living with diagnosed HIV/AIDS in Australia, 1981-2003.* Sexual Health, 2009. **6**(2): p. 129-34.
- 3. Kirby Institute, *Australian HIV Observational Database annual report*. 2019, Kirby Institute, UNSW Australia: Sydney.
- 4. NSW Government Health, *NSW HIV strategy 2016-2020 quarter 4 2018 data report*. 2019, NSW Health: Sydney.
- 5. van Sighem, A., et al., *Estimating HIV Incidence, Time to Diagnosis, and the Undiagnosed HIV Epidemic Using Routine Surveillance Data.* Epidemiology, 2015. **26**(5): p. 653-60.
- 6. Holt, M., et al., *The prevalence and correlates of undiagnosed HIV among Australian gay and bisexual men: results of a national, community-based, bio-behavioural survey.* J Int AIDS Soc, 2015. **18**: p. 20526.
- 7. McMahon, J.H., et al., *Clinic Network Collaboration and Patient Tracing to Maximize Retention in HIV Care.* PLoS One, 2015. **10**(5): p. e0127726.
- 8. Bryant M, L.H., Eu B, O'Bryan J, Woolley I, et al. (2019) Victorian clinical network to maximize retention in hiv care: Poster 67. 2019 Australasian HIV & AIDS Conference, Perth, WA.
- 9. Petoumenos, K., et al., Subsidized optimal ART for HIV-positive temporary residents of Australia improves virological outcomes: results from the Australian HIV Observational Database Temporary Residents Access Study. J Int AIDS Soc, 2015. **18**: p. 19392.
- 10. Bartlett, S.R., et al., *The population level care cascade for hepatitis C in British Columbia, Canada as of 2018: Impact of direct acting antivirals.* Liver International, 2019. **39**(12): p. 2261-2272.
- 11. Hutchinson, S.J., S.M. Bird, and D.J. Goldberg, *Influence of alcohol on the progression of hepatitis C virus infection: a meta-analysis.* Clin Gastroenterol Hepatol, 2005. **3**(11): p. 1150-9.
- 12. Thein, H.H., et al., *Estimation of stage-specific fibrosis progression rates in chronic hepatitis C virus infection: a meta-analysis and meta-regression.* Hepatology, 2008. **48**(2): p. 418-31.
- 13. Valerio, H., et al., *PS-070-Uptake of testing, linkage to care, and treatment for hepatitis C infection among people who inject drugs in Australia: The ETHOS Engage study.* Journal of Hepatology, 2019. **70**(1): p. e42.
- 14. Nahon, P., et al., *Eradication of Hepatitis C Virus Infection in Patients With Cirrhosis Reduces Risk of Liver and Non-Liver Complications.* Gastroenterology, 2017. **152**(1): p. 142-156 e2.
- 15. Di Marco, V., et al., *Effects of Eradicating Hepatitis C Virus Infection in Patients With Cirrhosis Differ With Stage of Portal Hypertension.* Gastroenterology, 2016. **151**(1): p. 130-139 e2.
- 16. Morgan, R.L., et al., *Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: a metaanalysis of observational studies.* Annals of Internal Medicine, 2013. **158**(5 Pt 1): p. 329-37.
- 17. Kirby Institute, *Monitoring hepatitis C treatment uptake in Australia* 2017, Kirby Institute, UNSW Sydney: Sydney.
- Allard, N., J.H. MacLachlan, and B.C. Cowie, *The cascade of care for Australians living with chronic hepatitis B: measuring access to diagnosis, management and treatment*. Australian and New Zealand Journal of Public Health, 2015. **39**(3): p. 255-9.
- 19. Marino, S., et al., *A methodology for performing global uncertainty and sensitivity analysis in systems biology*. Journal of Theoretical Biology, 2008. **254**: p. 178-96.

- 20. Turnour, C.E., M.A. Cretikos, and S.J. Conaty, Prevalence of chronic hepatitis B in South Western Sydney: evaluation of the country of birth method using maternal seroprevalence data. Aust N Z J Public Health, 2011. **35**(1): p. 22-6.
- 21. Reekie, J., et al., *Country of birth and other factors associated with hepatitis B prevalence in a population with high levels of immigration.* Journal of Gastroenterology and Hepatology, 2013. **28**(9): p. 1539-44.
- 22. Kowdley, K.V., et al., *Prevalence of chronic hepatitis B among foreign-born persons living in the United States by country of origin.* Hepatology, 2012. **56**(2): p. 422-433.
- 23. Schweitzer A, Horn J, Mikolayczyk R, Ott J, *Worldwide prevalence of chronic hepatitis B virus infection: estimations based on a systematic review of data published between 1965 and 2013.* The Lancet, 2015. **online**.
- 24. MacLachlan, J.H., et al., *The burden of chronic hepatitis B virus infection in Australia, 2011.* Aust N Z J Public Health, 2013. **37**(5): p. 416-22.
- 25. Deng, L., et al., *Trends in the prevalence of hepatitis B infection among women giving birth in New South Wales.* The Medical journal of Australia, 2017. **206**(7): p. 301.
- 26. Liu, B., et al., *The end of the Australia antigen? An ecological study of the impact of universal newborn hepatitis B vaccination two decades on.* Vaccine, 2012. **30**(50): p. 7309.
- 27. Ali, H., et al., *A new approach to estimating trends in chlamydia incidence*. Sex Transm Infect, 2015.
- 28. Bourne, C., et al., What proportion of sexually transmissible infections and HIV are diagnosed in New South Wales' public sexual health services compared with other services? Sexual health, 2013. **10**(2): p. 119-23.
- 29. Grulich, A.E., et al., Sex in Australia: sexually transmissible infection and blood-borne virus history in a representative sample of adults. Aust N Z J Public Health, 2003. **27**(2): p. 234-41.
- 30. Guy, R., et al., *The impact of sexually transmissible infection programs in remote Aboriginal communities in Australia: a systematic review.* Sexual Health, 2012. **9**(3): p. 205-12.
- 31. Foster, R. and H. Ali, *Does being in a regional area impact on the timeliness of treatment?* 2012. Australasian Society for HIV Medicine.
- 32. Bangor-Jones, R.D., Sexual health in general practice: do practitioners comply with the sexually transmitted infections guidelines for management of suspected chlamydial infections? Int J STD AIDS, 2011. **22**(9): p. 523-4.
- 33. Iversen, J., et al., *Reduction in HCV incidence among injection drug users attending needle and syringe programs in Australia: a linkage study.* American Journal of Public Health, 2013. **103**(8): p. 1436-44.
- 34. Australasian Sexual Health Alliance, *Australian STI management guidelines for use in primary care*. 2018, ASHA: Sydney.

1.